Mesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue
Authors
Abstract:
Objective(s) Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored. Materials and Methods Adherent cells were isolated from the collagenase digests of adipose tissues excised from rat epicardial and epididymal regions and propagated with several subcultures. The cells were then investigated whether or not they were able to differentiate into bone, cartilage and adipose cell lineages. Studied cells from two adipose tissues were also compared with respect to their in vitro proliferation capacity. The presence of senescent cells in the culture was determined and compared using senescence-associated (SA) ß-galactosidase staining method. Results Successful differentiations of the cells were indicative of their mesenchymal stem cells (MSCs) identity. Epicardial adipose-derived cells tended to have a short population doubling time (45±9.6 hr) than the epididymal adipose-derived stem cells (69±16 hr, P< 0.05). Colonogenic activity and the growth curve characteristics were all better in the culture of stem cells derived from epicardial compared to epididymal adipose tissue. Comparatively more percentage of senescent cells was present at the cultures derived from epididymal adipose tissue (P< 0.05). Conclusion Our data emphasize on the differences existed between the stem cells derived from adipose depots of different anatomical sites in terms of their proliferative capacity and in vitro aging. Such data can help understand varying results reported by different laboratories involved in adipose stem cell investigations.
similar resources
mesenchymal stem cells derived from rat epicardial versus epididymal adipose tissue
objective(s) some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. in the present study proliferation capacity and aging of such cells were explored. materials and methods adherent cells were isolated from the collagenase digests of adipose tiss...
full textCytotoxicity of Chitosan Derived from Shrimp for Bone Scaffold on Adipose Tissue-Derived Mesenchymal Stem Cells
full text
Isolation, Characterization and Differentiation of Rat Adipose Tissue Derived Mesenchymal Stem Cells
Introduction: Mesenchymal stem cells have the potential of self-renewal and differentiation into different cell types, including blood cells, heart, nerves and cartilage, and have unlimited power for division. These cells can be obtained from cord, before implantation from fertilized cells and also from various tissues of adults although the differentiation power and the ability to reproduce ...
full textDifferentiation of Mesenchymal Stem Cells Derived From Human Adipose Tissue into Cholinergic-like Cells: In Vitro Study
Introduction: Cholinergic-associated diseases currently constitute a significant cause of neurological and neurodegenerative disabilities. As the drugs are not efficient in improving the suffered tissues, stem cell treatment is considered an effective strategy for substituting the lost cells. Methods: In the current study, we set out to investigate the differentiation properties of human adip...
full textSkin wound healing following the spray of human abdominal adipose tissue-derived mesenchymal stem cells in diabetic male rat
Introduction: Diabetes is rising worldwide and impaired wound healing is one of its major complications. This study aimed to determine the effects of adipose-derived mesenchymal stem cells (MSCs) on wound healing in diabetic rats. Materials and Methods: In this experimental study, abdominal adipose tissue was obtained from 10 patients who underwent an abdominoplasty. MSCs were isolated from adi...
full textMy Resources
Journal title
volume 14 issue 1
pages 25- 34
publication date 2011-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023